English

Write the Number of Solutions of the Equation Tan X + Sec X = 2 Cos X in the Interval [0, 2π]. - Mathematics

Advertisements
Advertisements

Question

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].

Sum

Solution

Given:
tanx + secx = 2 cosx
\[\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \frac{\sin x + 1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \sin x + 1 = 2 \cos^2 x\]
\[ \Rightarrow \sin x = 2 \cos^2 x - 1\]

\[\Rightarrow 2\left( 1 - \sin^2 x \right) - 1 = \sin x\]

\[ \Rightarrow 2 - 2 \sin^2 x - 1 = \sin x\]

\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]

\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]

\[ \Rightarrow 2 \sin^2 x + 2\sin x - \sin x - 1 = 0\]

\[ \Rightarrow 2\sin x\left( \sin x + 1 \right) - 1\left( \sin x + 1 \right) = 0\]

\[ \Rightarrow \left( \sin x + 1 \right)\left( 2\sin x - 1 \right) = 0\]

\[ \Rightarrow \sin x + 1 = 0\text{ or }2\sin x - 1 = 0\]

\[ \Rightarrow \sin x = - 1\text{ or }\sin x = \frac{1}{2}\]
Now, 
\[\sin x = - 1\]
\[ \Rightarrow \sin x = \sin\left( \frac{3\pi}{2} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}, n \in Z\]
Because it contains an odd multiple of `pi/2` and we know that tan x and sec x are undefined on the odd multiple, this value will not satisfy the given equation.
And,

\[\sin x = \frac{1}{2}\]

\[ \Rightarrow \sin x = \sin\left( \frac{\pi}{6} \right)\]

\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]

Now, 

\[\text{ For } n = 0, x = \frac{\pi}{6}\]

\[\text{ For }n = 1, x = \frac{11\pi}{6} \]

For other values of n, the condition is not true.
Hence, the given equation has two solutions in 

\[\left[ 0, 2\pi \right]\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.2 | Q 1 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the general solutions of tan2 2x = 1.

 

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×