Advertisements
Advertisements
Question
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Solution
Given:
tanx + secx = 2 cosx
\[\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \frac{\sin x + 1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \sin x + 1 = 2 \cos^2 x\]
\[ \Rightarrow \sin x = 2 \cos^2 x - 1\]
\[\Rightarrow 2\left( 1 - \sin^2 x \right) - 1 = \sin x\]
\[ \Rightarrow 2 - 2 \sin^2 x - 1 = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2\sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2\sin x\left( \sin x + 1 \right) - 1\left( \sin x + 1 \right) = 0\]
\[ \Rightarrow \left( \sin x + 1 \right)\left( 2\sin x - 1 \right) = 0\]
\[ \Rightarrow \sin x + 1 = 0\text{ or }2\sin x - 1 = 0\]
\[ \Rightarrow \sin x = - 1\text{ or }\sin x = \frac{1}{2}\]
Now,
\[\sin x = - 1\]
\[ \Rightarrow \sin x = \sin\left( \frac{3\pi}{2} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}, n \in Z\]
Because it contains an odd multiple of `pi/2` and we know that tan x and sec x are undefined on the odd multiple, this value will not satisfy the given equation.
And,
\[\sin x = \frac{1}{2}\]
\[ \Rightarrow \sin x = \sin\left( \frac{\pi}{6} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]
Now,
\[\text{ For } n = 0, x = \frac{\pi}{6}\]
\[\text{ For }n = 1, x = \frac{11\pi}{6} \]
For other values of n, the condition is not true.
Hence, the given equation has two solutions in
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.