मराठी

Write the Number of Solutions of the Equation Tan X + Sec X = 2 Cos X in the Interval [0, 2π]. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].

बेरीज

उत्तर

Given:
tanx + secx = 2 cosx
\[\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \frac{\sin x + 1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \sin x + 1 = 2 \cos^2 x\]
\[ \Rightarrow \sin x = 2 \cos^2 x - 1\]

\[\Rightarrow 2\left( 1 - \sin^2 x \right) - 1 = \sin x\]

\[ \Rightarrow 2 - 2 \sin^2 x - 1 = \sin x\]

\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]

\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]

\[ \Rightarrow 2 \sin^2 x + 2\sin x - \sin x - 1 = 0\]

\[ \Rightarrow 2\sin x\left( \sin x + 1 \right) - 1\left( \sin x + 1 \right) = 0\]

\[ \Rightarrow \left( \sin x + 1 \right)\left( 2\sin x - 1 \right) = 0\]

\[ \Rightarrow \sin x + 1 = 0\text{ or }2\sin x - 1 = 0\]

\[ \Rightarrow \sin x = - 1\text{ or }\sin x = \frac{1}{2}\]
Now, 
\[\sin x = - 1\]
\[ \Rightarrow \sin x = \sin\left( \frac{3\pi}{2} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}, n \in Z\]
Because it contains an odd multiple of `pi/2` and we know that tan x and sec x are undefined on the odd multiple, this value will not satisfy the given equation.
And,

\[\sin x = \frac{1}{2}\]

\[ \Rightarrow \sin x = \sin\left( \frac{\pi}{6} \right)\]

\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]

Now, 

\[\text{ For } n = 0, x = \frac{\pi}{6}\]

\[\text{ For }n = 1, x = \frac{11\pi}{6} \]

For other values of n, the condition is not true.
Hence, the given equation has two solutions in 

\[\left[ 0, 2\pi \right]\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 1 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the general solutions of tan2 2x = 1.

 

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×