Advertisements
Advertisements
प्रश्न
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
उत्तर
Divide the given equation by 2 to get
`sqrt(3)/2 cos theta + 1/2 sin theta = 1/sqrt(2)`
or `cos pi/6 cos theta + sin pi/6 sin theta = cos pi/4`
or `cos(pi/6 - theta) = cos pi/4` or `cos(theta - pi/6) = cos pi/4`
Thus, the solution is given by, i.e., θ = `2 m pi +- pi/4 + pi/6`
Hence, the solution is
θ = `2 m pi + pi/4 + pi/6` and `2 m pi - pi/4 + pi/6,` i.e., `theta = 2 m pi + (5pi)/12` and `theta = 2 m pi - pi / 12`
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
The minimum value of 3cosx + 4sinx + 8 is ______.