मराठी

If Sec \[X = X + \Frac{1}{4x}\], Then Sec X + Tan X = - Mathematics

Advertisements
Advertisements

प्रश्न

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

पर्याय

  • \[x, \frac{1}{x}\]

     

  • \[2x, \frac{1}{2x}\]

     

  • \[- 2x, \frac{1}{2x}\]

     

  • \[- \frac{1}{x}, x\]

     

MCQ

उत्तर

\[2x, \frac{1}{2x}\]

We have, 
\[secx = x + \frac{1}{4x}\]
\[ \Rightarrow se c^2 x = = x^2 + \frac{1}{16 x^2} + \frac{1}{2}\]
\[ \Rightarrow 1 + \tan^2 x = 1 + x^2 + \frac{1}{16 x^2} - \frac{1}{2}\]
\[ \Rightarrow \tan^2 x = x^2 + \frac{1}{16 x^2} - \frac{1}{2}\]
\[ \Rightarrow \tan^2 x = \left( x - \frac{1}{4x} \right)^2 \]
\[ \therefore \tan x = \pm \left( x - \frac{1}{4x} \right)\]
\[ \Rightarrow sec x - \tan x = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) or \left( x + \frac{1}{4x} \right) - \left[ - \left( x - \frac{1}{4x} \right) \right]\]
\[ = \frac{1}{2x}\text{ or }2x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 2 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If tan θ + sec θ =ex, then cos θ equals


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×