मराठी

Solve the Following Equation: √ 3 Cos X + Sin X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]

बेरीज

उत्तर

 Given:

\[\sqrt{3} \cos x + \sin x = 1\] ...(i)
The equation is of the form of \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3}, b = 1\] and C = 1.
Let: q = r cos α and \[a = r \cos \alpha\]
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and
\[\tan \alpha = \frac{b}{a} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = \frac{\pi}{6}\]
On putting
\[a = \sqrt{3} = r \cos \alpha\] and b =1 = r sinα  in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 1\]

\[\Rightarrow r \cos (x - \alpha) \hspace{0.167em} = 1\]

\[ \Rightarrow 2 \cos (x - \alpha) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \frac{1}{2}\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \cos \frac{\pi}{3}\]

\[ \Rightarrow x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}, n \in Z\]

On taking positive sign, we get:

\[x - \frac{\pi}{6} = 2n\pi + \frac{\pi}{3} \]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{3} + \frac{\pi}{6}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = (4n + 1)\frac{\pi}{2}, n \in Z\]
Now, on taking negative sign of the equation, we get:
\[x - \frac{\pi}{6} = 2m\pi - \frac{\pi}{3}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{3} + \frac{\pi}{6}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{6} = (12m - 1) \frac{\pi}{6}, m \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 6.2 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 4 x = cos 2 x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Write the general solutions of tan2 2x = 1.

 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×