Advertisements
Advertisements
प्रश्न
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
उत्तर
Given:
The equation is of the form of \[a \cos x + b \sin x = c\], where
On putting
\[\Rightarrow r \cos (x - \alpha) \hspace{0.167em} = 1\]
\[ \Rightarrow 2 \cos (x - \alpha) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \frac{1}{2}\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \cos \frac{\pi}{3}\]
\[ \Rightarrow x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}, n \in Z\]
On taking positive sign, we get:
\[ \Rightarrow x = 2n\pi + \frac{\pi}{3} + \frac{\pi}{6}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = (4n + 1)\frac{\pi}{2}, n \in Z\]
\[x - \frac{\pi}{6} = 2m\pi - \frac{\pi}{3}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{3} + \frac{\pi}{6}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{6} = (12m - 1) \frac{\pi}{6}, m \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
In a ∆ABC, prove that:
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Write the general solutions of tan2 2x = 1.
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.