Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
Now,
\[ \Rightarrow \tan x + \tan2x + \left( \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \right) = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x\tan2x) + \tan x + \tan2x = 0\]
\[ \Rightarrow (\tan x + \tan2x) (2 - \tan x \tan2x) = 0\]
\[\tan x + \tan2x = 0 \]
\[ \Rightarrow \tan x = - \tan2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x \]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]
And,
\[2 - \tan x \tan2x = 0 \]
\[ \Rightarrow \tan x \tan2x = 2 \]
\[ \Rightarrow \frac{\sin x}{\cos x}\frac{\sin2x}{\cos2x} = 2\]
\[ \Rightarrow \frac{2 \sin^2 x \cos x}{\cos x} = 2 \cos^2 x - 2 \sin^2 x\]
\[ \Rightarrow 4 \sin^2 x = 2 \cos^2 x \]
\[ \Rightarrow \tan^2 x = \frac{1}{2} \Rightarrow \tan^2 x = \tan^2 \alpha \]
\[ \Rightarrow x = m\pi + \alpha, m \in Z, \alpha = \tan^{- 1} \left( \frac{1}{2} \right)\]
∴ \[x = \frac{n\pi}{3}, n \in Z\] or
Here,
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.