मराठी

Solve the Following Equation: Tan X + Tan 2 X + Tan 3 X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]
बेरीज

उत्तर

\[\tan x + \tan 2x + \tan 3x = 0\]
Now,
\[\tan x + \tan2x + \tan (x + 2x) = 0\]
\[ \Rightarrow \tan x + \tan2x + \left( \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \right) = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x\tan2x) + \tan x + \tan2x = 0\]
\[ \Rightarrow (\tan x + \tan2x) (2 - \tan x \tan2x) = 0\]
\[\Rightarrow \tan x + \tan 2x = 0\] or
\[2 - \tan x \tan2x = 0\]
Now,

\[\tan x + \tan2x = 0 \]

\[ \Rightarrow \tan x = - \tan2x\]

\[ \Rightarrow \tan x = \tan - 2x\]

\[ \Rightarrow x = n\pi - 2x \]

\[ \Rightarrow 3x = n\pi \]

\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

And,

\[2 - \tan x \tan2x = 0 \]
\[ \Rightarrow \tan x \tan2x = 2 \]
\[ \Rightarrow \frac{\sin x}{\cos x}\frac{\sin2x}{\cos2x} = 2\]
\[ \Rightarrow \frac{2 \sin^2 x \cos x}{\cos x} = 2 \cos^2 x - 2 \sin^2 x\]
\[ \Rightarrow 4 \sin^2 x = 2 \cos^2 x \]
\[ \Rightarrow \tan^2 x = \frac{1}{2} \Rightarrow \tan^2 x = \tan^2 \alpha \]
\[ \Rightarrow x = m\pi + \alpha, m \in Z, \alpha = \tan^{- 1} \left( \frac{1}{2} \right)\]

∴ \[x = \frac{n\pi}{3}, n \in Z\] or

\[x = m\pi + \alpha, m \in Z\]

Here,

\[x = m\pi + \alpha, m \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 5.1 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×