Advertisements
Advertisements
Question
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.
Solution
secx cos5x = –1
⇒ cos5x = `(-1)/secx`
We know that
secx = `1/cosx`
⇒ cos5x + cosx = 0
By transformation formula of T-ratios,
We know that
cosA + cosB = `2cos(("A" + "B")/2) cos(("A" - "B")/2)`
⇒ `2cos((5x + x)/2) cos((5x - x)/2)` = 0
⇒ 2cos3x cos2x = 0
⇒ cos3x = 0 or cos2x = 0
∵ 0 < x ≤ `pi/2`
Therefore, 0 < 2x ≤ π or 0 < 3x ≤ `(3pi)/2`
Therefore, 2x = `pi/2`
⇒ x = `pi/4`
3x = `pi/2`
⇒ x = `pi/6`
Or 3x = `(3pi)/2`
⇒ x = `pi/2`
Hence, x = `pi/6, pi/4, pi/2`.
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: