English

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2 [Hint: Express cos(α - β) = cos((θ + β) - (θ + β))] - Mathematics

Advertisements
Advertisements

Question

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]

Sum

Solution

sin(θ + α) = a and sin(θ + β) = b

L.H.S = cos 2(α - β) - 4ab cos(α - β)

Using cos2x = 2cos2x - 1,

Let us solve,

⇒ LHS = 2cos2(α - β) - 1 - 4ab cos(α - β)

⇒ LHS = 2cos(α - β) {cos(α - β) - 2ab} - 1

Since,

cos(α - β) = cos{(θ + α) - (θ + β)}

cos(A - B) = cosA cosB + sinA sinB

⇒ cos(α - β) = cos(θ + α) cos(θ + β) + sin(θ + α) sin(θ + β)

Since, sin(θ + α) = a

⇒ cos(θ + α) = `sqrt(1  –  sin^2(θ + alpha))`

= `sqrt(1  –  "a"^2)`

Similarly,

cos(θ + β) = `sqrt(1  –  b^2)`

Therefore,

cos(α - β) = `sqrt(1 - a^2) sqrt(1 - b^2) + ab`

Therefore,

L.H.S = `2{ab + sqrt(1  –  a^2)(1  –  b^2)}{ab + sqrt(1  –  a^2)(1  –  b^2) - 2ab} – 1`

⇒ L.H.S =`2{sqrt(1  –  a^2)(1  –  b^2) + ab}{sqrt(1  –  a^2)(1  –  b^2) – ab} - 1`

Using (x + y)(x - y) = x2 - y2

⇒ L.H.S = 2{(1 - a2)(1 - b2) - a2b2} - 1

⇒ L.H.S = 2{1 - a2 - b2 + a2b2} - 1

⇒ L.H.S = 2 - 2a2 - 2b2 - 1

⇒ L.H.S = 1 - 2a2 - 2b2 = RHS

Therefore,

We get,

cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 54]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 20 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Show that sin 100° − sin 10° is positive. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×