Advertisements
Advertisements
Question
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
Solution
sin(θ + α) = a and sin(θ + β) = b
L.H.S = cos 2(α - β) - 4ab cos(α - β)
Using cos2x = 2cos2x - 1,
Let us solve,
⇒ LHS = 2cos2(α - β) - 1 - 4ab cos(α - β)
⇒ LHS = 2cos(α - β) {cos(α - β) - 2ab} - 1
Since,
cos(α - β) = cos{(θ + α) - (θ + β)}
cos(A - B) = cosA cosB + sinA sinB
⇒ cos(α - β) = cos(θ + α) cos(θ + β) + sin(θ + α) sin(θ + β)
Since, sin(θ + α) = a
⇒ cos(θ + α) = `sqrt(1 – sin^2(θ + alpha))`
= `sqrt(1 – "a"^2)`
Similarly,
cos(θ + β) = `sqrt(1 – b^2)`
Therefore,
cos(α - β) = `sqrt(1 - a^2) sqrt(1 - b^2) + ab`
Therefore,
L.H.S = `2{ab + sqrt(1 – a^2)(1 – b^2)}{ab + sqrt(1 – a^2)(1 – b^2) - 2ab} – 1`
⇒ L.H.S =`2{sqrt(1 – a^2)(1 – b^2) + ab}{sqrt(1 – a^2)(1 – b^2) – ab} - 1`
Using (x + y)(x - y) = x2 - y2
⇒ L.H.S = 2{(1 - a2)(1 - b2) - a2b2} - 1
⇒ L.H.S = 2{1 - a2 - b2 + a2b2} - 1
⇒ L.H.S = 2 - 2a2 - 2b2 - 1
⇒ L.H.S = 1 - 2a2 - 2b2 = RHS
Therefore,
We get,
cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Show that sin 100° − sin 10° is positive.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB