Advertisements
Advertisements
Question
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
Solution
Given that: cos(θ + Φ) = m cos(θ – Φ)
⇒ `(cos(theta + phi))/(cos(theta - phi)) = m/1`
Using componendo and dividendo theorem, we get
`(cos(theta + phi) + cos(theta - phi))/(cos(theta + phi) - cos(theta - phi)) = (m + 1)/(m - 1)`
⇒ `(2cos((theta + phi + theta - phi)/2).cos((theta+ phi - theta + phi)/2))/(-2sin((theta + phi + theta - phi)/2)*sin((theta + phi - theta + phi)/2)) = (m + 1)/(m - 1)`
⇒ `(costheta.cosphi)/(-sintheta.sinphi) = (m + 1)/(m - 1)`
⇒ `- cot theta . cot phi = (m + 1)/(m - 1)`
⇒ `(-cot phi)/(tantheta) = (m + 1)/(m - 1) - (1 + m)/(1 - m)`
⇒ tan θ = `(1 - m)/(1 + m) cot phi`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If sin α + sin β = a and cos α + cos β = b, show that
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Show that sin 100° − sin 10° is positive.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If sinθ + cosθ = 1, then find the general value of θ.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.