Advertisements
Advertisements
Question
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
Solution
Given that: tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`
⇒ tanθ = `(tanalpha - 1)/(tan alpha + 1)`
= `(tanalpha - tan pi/4)/(1 + tan pi/4 tan alpha)`
⇒ tanθ = `tan(alpha - pi/4)`
∴ θ = `alpha - pi/4`
⇒ cosθ = `cos(alpha - pi/4)`
⇒ cosθ = `cos alpha cos pi/4 + sin alpha sin pi/4`
⇒ cosθ = `cos alpha . 1/sqrt(2) + sin alpha . 1/sqrt(2)`
⇒ `sqrt(2) cos theta` = cosα + sinα
⇒ sinα + cosα = `sqrt(2) cos theta`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
tan 3A − tan 2A − tan A =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If sinθ + cosθ = 1, then find the general value of θ.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.