English

Prove the following: cos(π+x)cos(-x)sin(π-x)cos(π2+x)= cot2x - Mathematics

Advertisements
Advertisements

Question

Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`

Sum

Solution

L.H.S. = `(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x))`

Now using `sin (π - x) = sin x, cos (pi/2+x) = - sin x`

L.H.S. = `(- cosx xx cosx )/(sinx  (-  sinxx)`

= `cos^2x/sin^2x = (cosx/sinx)^2`

= `cot^2xx`

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.3 [Page 73]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.3 | Q 8 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Find the value of: sin 75°


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If A + B = C, then write the value of tan A tan B tan C.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×