English

Prove That: 1 Sin ( X − a ) Sin ( X − B ) = Cot ( X − a ) − Cot ( X − B ) Sin ( a − B ) - Mathematics

Advertisements
Advertisements

Question

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]

Answer in Brief

Solution

\[\text{ RHS }\hspace{0.167em} = \frac{\cot\left( x - a \right) - \cot(x - b)}{\sin(a - b)}\]
\[ = \frac{\frac{\cos(x - a)}{\sin(x - a)} - \frac{\cos(x - b)}{\sin(x - b)}}{\sin(a - b)}\]
\[ = \frac{\sin(x - b) \cos(x - a) - \sin(x - a) \cos(x - b)}{\sin(x - a) \sin(x - b) \sin(a - b)}\]
\[ = \frac{\sin(x - b - x + a)}{\sin(x - a) \sin(x - b) \sin(a - b)}\]
\[ = \frac{\sin(a - b)}{\sin(x - a) \sin(x - b) \sin(a - b)}\]
\[ = \frac{1}{\sin(x - a)\sin(x - b)} \]
 = LHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 29.1 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


The value of tan 75° - cot 75° is equal to ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×