Advertisements
Advertisements
Question
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
Options
a
b
`a/b`
None
Solution
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to b.
Explanation:
Given that: tanθ = `a/b`
bcos2θ + asin2θ = `b[(1 - tan^2 theta)/(1 + tan^2 theta)] + a[(2 tan theta)/(1 + tan^2 theta)]`
= `b[(1 - a^2/b^2)/(1 + a^2/b^2)] + a[((2a)/b)/(1 + a^2/b^2)]`
= `b[(b^2 - a^2)/(b^2 + a^2)] + [((2a^2)/b)/((b^2 + a^2)/b^2)]`
= `(b^3 - a^2b)/(b^2 + a^2) + (2a^2b)/(b^2 + a^2)`
= `(b^3 - a^2b + 2a^2b)/(b^2 + a^2)`
= `(b^3 + a^2b)/(b^2 + a^2)`
= `(b(b^2 + a^2))/(b^2 + a^2)`
= b
APPEARS IN
RELATED QUESTIONS
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Find the value of: sin 75°
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
If A + B = C, then write the value of tan A tan B tan C.
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.