Advertisements
Advertisements
प्रश्न
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
पर्याय
a
b
`a/b`
None
उत्तर
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to b.
Explanation:
Given that: tanθ = `a/b`
bcos2θ + asin2θ = `b[(1 - tan^2 theta)/(1 + tan^2 theta)] + a[(2 tan theta)/(1 + tan^2 theta)]`
= `b[(1 - a^2/b^2)/(1 + a^2/b^2)] + a[((2a)/b)/(1 + a^2/b^2)]`
= `b[(b^2 - a^2)/(b^2 + a^2)] + [((2a^2)/b)/((b^2 + a^2)/b^2)]`
= `(b^3 - a^2b)/(b^2 + a^2) + (2a^2b)/(b^2 + a^2)`
= `(b^3 - a^2b + 2a^2b)/(b^2 + a^2)`
= `(b^3 + a^2b)/(b^2 + a^2)`
= `(b(b^2 + a^2))/(b^2 + a^2)`
= b
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Find the value of: sin 75°
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
Prove that:
Write the maximum value of 12 sin x − 9 sin2 x.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
tan 3A − tan 2A − tan A =
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan 75° - cot 75° is equal to ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`