Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\text{ RHS }= \frac{\tan(x - b) - \tan(x - a)}{\sin(a - b)}\]
\[ = \frac{\frac{\sin(x - b)}{\cos(x - b)} - \frac{\sin(x - a)}{\cos(x - a)}}{\sin(a - b)}\]
\[ = \frac{\sin(x - b) \cos(x - a) - \sin(x - a) \cos(x - b)}{\sin(a - b) \cos(x - a) \cos(x - b)}\]
\[ = \frac{\sin(x - b - x + a)}{\sin(a - b) \cos(x - a) \cos(x - b)} ( \text{ Using }\sin(A - B) = \sin A\cos B - \cos A\sin B)\]
\[ = \frac{\sin(a - b)}{\sin(a - b) \cos(x - a) \cos(x - b)}\]
\[ = \frac{1}{\cos(x - a) \cos(x - b)} \]
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Find the value of: tan 15°
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Prove that
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
Prove that:
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A + B = C, then write the value of tan A tan B tan C.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
The value of tan3A - tan2A - tanA is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.