Advertisements
Advertisements
प्रश्न
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
उत्तर
\[\text{ LHS }= \cos^2 A + \cos^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = \cos^2 A + 1 - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\cos\left( A - B \right) - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\left\{ \cos\left( A - B \right) - 2\cos A \cos B \right\}\]
\[ = 1 + \cos\left( A + B \right)\left( \cos A \cos B + \sin A \sin B - 2\cos A \cos B \right)\]
\[ = 1 + \cos\left( A + B \right)\left( - \cos A \cos B + \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\left( \cos A \cos B - \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\cos\left( A + B \right)\]
\[ = 1 - \cos^2 \left( A + B \right)\]
\[ = \sin^2 \left( A + B \right)\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that
Prove that:
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If A + B = C, then write the value of tan A tan B tan C.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If sinθ + cosθ = 1, then find the general value of θ.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.