मराठी

Prove That: Cos2 a + Cos2 B − 2 Cos a Cos B Cos (A + B) = Sin2 (A + B) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)

थोडक्यात उत्तर

उत्तर

\[\text{ LHS }= \cos^2 A + \cos^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = \cos^2 A + 1 - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\cos\left( A - B \right) - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\left\{ \cos\left( A - B \right) - 2\cos A \cos B \right\}\]
\[ = 1 + \cos\left( A + B \right)\left( \cos A \cos B + \sin A \sin B - 2\cos A \cos B \right)\]
\[ = 1 + \cos\left( A + B \right)\left( - \cos A \cos B + \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\left( \cos A \cos B - \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\cos\left( A + B \right)\]
\[ = 1 - \cos^2 \left( A + B \right)\]
\[ = \sin^2 \left( A + B \right)\]
 = RHS
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 16.5 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If A + B = C, then write the value of tan A tan B tan C.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If sinθ + cosθ = 1, then find the general value of θ.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×