Advertisements
Advertisements
प्रश्न
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
उत्तर
`tan4 = tan 2 (2x) = (2tan2x)/(1 - tan^2 2x)`
= `(2tan 2x)/(1 - tan^2 (2x))`
= `((2tanx)/(1 - tan^2x))/(1 - (2tan^x)/(1 - tan^2x) `
= `(4tanx (1 - tan^2 x))/((1 - tan^2x)^2 - 4 tan^2 x)`
= `(4tanx ( 1 - tan^2 x))/(1 - 2 tan^2x+ tan^2 x - 4tan^2`
= `(4tanx (1 - tan^2x))/(1 + tan^4 x - 6 tan^2x)`
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Find the value of: sin 75°
Find the value of: tan 15°
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that:
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
If sin α + sin β = a and cos α + cos β = b, show that
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the maximum value of 12 sin x − 9 sin2 x.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cot (α + β) = 0, sin (α + 2β) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.