मराठी

If Sin a = 3 5 , Cos B = − 12 13 , Where a and B Both Lie in Second Quadrant, Find the Value of Sin (A + B). - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).

थोडक्यात उत्तर

उत्तर

 Given:
\[ \sin A = \frac{3}{5}\text{ and }\cos B = - \frac{12}{13}\]
and that A and B both lie in second qudrant .
We know that in second quadrant sine function is positive and \cosine function is negative .
Therefore,
\[ \cos A = - \sqrt{1 - \sin^2 A}\text{ and }\sin B = \sqrt{1 - \cos^2 B} \]
\[ \Rightarrow \cos A = - \sqrt{1 - \left( \frac{3}{5} \right)^2} \text{ and }\sin B = \sqrt{1 - \left( \frac{- 12}{13} \right)^2} \]
\[ \Rightarrow \cos A = - \sqrt{1 - \frac{9}{25}}\text{ and }\sin B = \sqrt{1 - \frac{144}{169}}\]
\[ \Rightarrow \cos A = - \sqrt{\frac{16}{25}}\text{ and }\sin B = \sqrt{\frac{25}{69}}\]
\[ \Rightarrow \cos A = \frac{- 4}{5}\text{ and }\sin B = \frac{5}{13}\]
Now, 
\[\sin\left( A + B \right) = \sin A \cos B + \cos A \sin B\]
\[ = \frac{3}{5} \times \frac{- 12}{13} + \frac{- 4}{5} \times \frac{5}{13}\]
\[ = \frac{- 36}{65} - \frac{20}{65}\]
\[ = \frac{- 56}{65}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 2.3 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Show that sin 100° − sin 10° is positive. 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


The value of tan3A - tan2A - tanA is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×