मराठी

If sinx + cosx = a, then sin6x + cos6x = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinx + cosx = a, then sin6x + cos6x = ______.

रिकाम्या जागा भरा

उत्तर

Given that: sinx + cosx = a

(sinx + cosx)2 = a2

⇒ sin2x + cos2x + 2sinx cosx = a

⇒ 1 + 2sinx cosx = a2

⇒ sinx cosx = `(a^2 - 1)/2`   .......(i)

sin6x + cos6x = (sin2x)3 + (cos2x)3

= (sin2x + cos2x)3 – 3 sin2x cos2x (sin2x + cos2x)

= `(1)^3 - 3((a^2 - 1)/2)^2 . 1`

= `1 - (3(a^2 - 1)^2)/4`

= `1/4[4 - 3(a^2 - 1)^2]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 63.(i) | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If cot (α + β) = 0, sin (α + 2β) is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan 75° - cot 75° is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×