हिंदी

If sinx + cosx = a, then sin6x + cos6x = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinx + cosx = a, then sin6x + cos6x = ______.

रिक्त स्थान भरें

उत्तर

Given that: sinx + cosx = a

(sinx + cosx)2 = a2

⇒ sin2x + cos2x + 2sinx cosx = a

⇒ 1 + 2sinx cosx = a2

⇒ sinx cosx = `(a^2 - 1)/2`   .......(i)

sin6x + cos6x = (sin2x)3 + (cos2x)3

= (sin2x + cos2x)3 – 3 sin2x cos2x (sin2x + cos2x)

= `(1)^3 - 3((a^2 - 1)/2)^2 . 1`

= `1 - (3(a^2 - 1)^2)/4`

= `1/4[4 - 3(a^2 - 1)^2]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 63.(i) | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


tan 3A − tan 2A − tan A =


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×