हिंदी

The value of sin(45° + θ) - cos(45° - θ) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin(45° + θ) - cos(45° - θ) is ______.

विकल्प

  • 2cosθ

  • 2sinθ

  • 1

  • 0

MCQ
रिक्त स्थान भरें

उत्तर

The value of sin(45° + θ) - cos(45° - θ) is 0.

Explanation:

Given expression is sin(45° + θ) - cos(45° - θ)

sin(45° + θ) = sin45° cosθ + cos45° sinθ

= `1/sqrt(2) cos theta + 1/sqrt(2) sin theta`

cos(45° - θ) = cos45° cosθ + sin45° sinθ

= `1/sqrt(2) cos theta + 1/sqrt(2) sin theta`

sin(45° + θ) - cos(45° - θ)

= `1/sqrt(2) costheta + 1/sqrt(2) sintheta - 1/sqrt(2) cos theta - 1/sqrt(2) sin theta`

= 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 43 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Show that sin 100° − sin 10° is positive. 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×