Advertisements
Advertisements
प्रश्न
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
विकल्प
- \[\frac{1}{2} \cos 2 x\]
0
- \[- \frac{1}{2} \cos 2 x\]
- \[\frac{1}{2}\]
उत्तर
\[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\]
\[ = \cos\left( \frac{\pi}{6} + x + \frac{\pi}{6} - x \right)\cos\left( \frac{\pi}{6} + x - \frac{\pi}{6} + x \right) \left[\text{ Using }\cos(A + B) \cos(A - B) = \cos^2 A - \sin^2 B \right]\]
\[ = \cos\frac{2\pi}{6}\cos2x\]
\[ = \frac{1}{2}\cos2x \left[ \text{ As }\cos\frac{\pi}{3} = \frac{1}{2} \right]\]
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
tan 3A − tan 2A − tan A =
If cot (α + β) = 0, sin (α + 2β) is equal to
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |