हिंदी

Prove That: Sin2 B = Sin2 a + Sin2 (A − B) − 2 Sin a Cos B Sin (A − B) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)

संक्षेप में उत्तर

उत्तर

\[\text{ RHS }= \sin^2 A + \sin^2 \left( A - B \right) - 2\sin A \cos B \sin\left( A - B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left\{ \sin\left( A - B \right) - 2\sin A \cos B \right\}\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( \sin A \cos B - \cos A \sin B - 2\sin A \cos B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( - \sin A \cos B - \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \left( \sin A \cos B + \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \sin\left( A + B \right)\]
\[ = \sin^2 A - \left( \sin^2 A - \sin^2 B \right)\]
\[ = \sin^2 A - \sin^2 A + \sin^2 B\]
\[ = \sin^2 B\]
 = LHS
Hence proved. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 16.4 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the value of: sin 75°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×