Advertisements
Advertisements
प्रश्न
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
उत्तर
\[\text{ RHS }= \sin^2 A + \sin^2 \left( A - B \right) - 2\sin A \cos B \sin\left( A - B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left\{ \sin\left( A - B \right) - 2\sin A \cos B \right\}\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( \sin A \cos B - \cos A \sin B - 2\sin A \cos B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( - \sin A \cos B - \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \left( \sin A \cos B + \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \sin\left( A + B \right)\]
\[ = \sin^2 A - \left( \sin^2 A - \sin^2 B \right)\]
\[ = \sin^2 A - \sin^2 A + \sin^2 B\]
\[ = \sin^2 B\]
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.