हिंदी

Match each item given under column C1 to its correct answer given under column C2. C1 C2 (a) 1-cosxsinx (i) cot2 x2 (b) 1+cosx1-cosx (ii) cot x2 (c) 1+cosxsinx (iii) |cosx+sinx| (d) 1+sin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`
जोड़ियाँ मिलाइएँ

उत्तर

C1 C2
(a) `(1 - cosx)/sinx` (i) `tan  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii)  `cot^2  x/2`
(c) `(1 + cosx)/sinx` (iii) `cot  x/2`
(d) `sqrt(1 + sin 2x)` (iv) `|cos x + sin x|`

Explanation:

(a) `(1 - cos x)/sinx = (2sin^2  x/2)/(2sin  x/2 cos  x/2) = tan  x/2`

Hence (a) matches with (iv) denoted by (a) ↔ (iv)

(b) `(1 + cosx)/(1 - cosx) = (2sin^2  x/2)/(2sin^2  x/2) = cot^2  x/2`

Hence (b) matches with (i) i.e., (b) ↔ (i)

(c) `(1 + cosx)/sinx = (2cos^2  x/2)/(2sin  x/2 cos  x/2) = cot  x/2`

Hence (c) matches with (ii) i.e., (c) ↔ (ii)

(d) `sqrt(1 + sin2x) = sqrt(sin^2x + cos^2x + 2sinx cos x)`

= `sqrt((sinx + cosx)^2`

= |(sin x + cos x)|

Hence (d) matches with (iii), i.e., (d) ↔ (iii)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Solved Examples [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Solved Examples | Q 22 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


Write the maximum value of 12 sin x − 9 sin2 x


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


The value of tan3A - tan2A - tanA is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×