Advertisements
Advertisements
प्रश्न
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
विकल्प
sin 2A
cos 2A
cos 3A
sin 3A
उत्तर
cos 2A
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove the following:
Prove the following:
Prove the following:
Prove the following:
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that:
If
cos (A + B)
If
cos (A + B)
If
If
tan (A + B)
If
tan (A - B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
If
cos (A + B)
Prove that:
Prove that
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Write the interval in which the value of 5 cos x + 3 cos
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ =
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) |
(i) |
(b) |
(ii) |
(c) |
(iii) |
(d) |
(iv) |
If tanθ =
[Hint: Express tanθ =
If sinθ + cosθ = 1, then find the general value of θ.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ =
[Hint: Express
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanA =
If tanα =
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) =
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) |
(c) |
(iii) |
(d) |
(iv) sin2x – sin2y |