हिंदी

The Value of Cos (36° − A) Cos (36° + A) + Cos (54° + A) Cos (54° − A) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is

विकल्प

  • sin 2A

  • cos 2A

  • cos 3A

  • sin 3A

MCQ

उत्तर

cos 2A

cos(36A)cos(36+A)+cos(54+A)cos(54A)

=cos(36A)cos(36+A)+sin[90(54+A)]sin[90(54A)][ Since sin(90θ)=cosθ]

=cos(36A)cos(36+A)+sin(36A)sin(36+A)

=cos(36+A36+A)[ Using cos(AB) formula ]

=cos2A

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 16 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: sin2 π6+cos2 π3-tan2 π4=-12


Prove the following:

cos(π+x)cos(-x)sin(π-x)cos(π2+x)= cot2x


Prove the following:

cos9x-cos5xsin17x-sin3x=-sin2xcos10x


Prove the following:

sinx- sinycosx+cosy=tan x-y2


Prove the following:

cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x


 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
cos (A + B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)


If sinA=12,cosB=1213, where π2< A < π and 3π2 < B < 2π, find tan (A − B).


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A - B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that:

sin(3π85)cos(π8+5)+cos(3π85)sin(π8+5)=1

 


Prove that tan69+tan661tan69tan66=1.


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Write the interval in which the value of 5 cos x + 3 cos (x+π3)+3 lies. 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 


cos10+sin10cos10sin10=

 


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = k+1k-1 sin Φ


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) 1-cosxsinx (i) cot2 x2
(b) 1+cosx1-cosx (ii) cot x2
(c) 1+cosxsinx (iii) |cosx+sinx|
(d) 1+sin2x (iv) tan x2

If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ.

[Hint: Express tanθ = tan(α-π4)θ=α-π4]


If sinθ + cosθ = 1, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = 1-m1+mcotϕ

[Hint: Express cos(θ+Φ)cos(θ-Φ)=m1 and apply Componendo and Dividendo]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanA = 12, tanB = 13, then tan(2A + B) is equal to ______.


If tanα = 17, tanβ = 13, then cos2α is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = -3cos3+x+x2 lie in the interval ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) 1-tanθ1+tanθ
(c) cot(π4+θ) (iii) 1+tanθ1-tanθ
(d) tan(π4+θ) (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.