हिंदी

If Tan (π/4 + X) + Tan (π/4 − X) = A, Then Tan2 (π/4 + X) + Tan2 (π/4 − X) = - Mathematics

Advertisements
Advertisements

प्रश्न

If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =

विकल्प

  •  a2 + 1

  • a2 + 2

  • a2 − 2

  •  None of these

MCQ

उत्तर

\[a^2 - 2\]

Given:
\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = a\]
\[ \Rightarrow \left[ \tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) \right]^2 = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) + 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right) = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{\tan45^\circ - \tan x}{1 + \tan45^\circ \tan x} \times \frac{\tan45^\circ + \tan x}{1 - \tan45^\circ \tan x} \right] \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{1^\circ - \tan x}{1 + \tan x} \times \frac{1 + \tan x}{1 - \tan x} \right]\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left( \frac{1 - \tan^2 x}{1 - \tan^2 x} \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 17 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Find the value of: sin 75°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Show that sin 100° − sin 10° is positive. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B = C, then write the value of tan A tan B tan C.


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sinθ + cosθ = 1, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


The value of tan 75° - cot 75° is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×