Advertisements
Advertisements
प्रश्न
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
उत्तर
\[\text{ LHS }= \cos^2 A + \cos^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = \cos^2 A + 1 - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\cos\left( A - B \right) - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\left\{ \cos\left( A - B \right) - 2\cos A \cos B \right\}\]
\[ = 1 + \cos\left( A + B \right)\left( \cos A \cos B + \sin A \sin B - 2\cos A \cos B \right)\]
\[ = 1 + \cos\left( A + B \right)\left( - \cos A \cos B + \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\left( \cos A \cos B - \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\cos\left( A + B \right)\]
\[ = 1 - \cos^2 \left( A + B \right)\]
\[ = \sin^2 \left( A + B \right)\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Find the value of: tan 15°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cot (α + β) = 0, sin (α + 2β) is equal to
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of tan 75° - cot 75° is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.