Advertisements
Advertisements
प्रश्न
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
विकल्प
−1
- \[\frac{1}{2}\]
- \[- \frac{1}{2}\]
None of these
उत्तर
\[\tan135^\circ = \tan(90^\circ + 45^\circ)\]
\[ = - \tan45^\circ\]
\[ = - 1\]
\[Or, \tan(69^\circ + 66^\circ) = \frac{\tan69^\circ + \tan66^\circ}{1 - \tan69^\circ \tan66^\circ}\]
\[ \Rightarrow - 1 = \frac{\tan69^\circ + \tan66^\circ}{1 - \tan69^\circ \tan66^\circ}\]
\[ \Rightarrow \tan69^\circ + \tan66^\circ - \tan69^\circ\tan66^\circ = - 1\]
Therefore,
\[2k = - 1\]
\[ \Rightarrow k = \frac{- 1}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If sin α + sin β = a and cos α + cos β = b, show that
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.