हिंदी

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2 [Hint: Express cos(α - β) = cos((θ + β) - (θ + β))] - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]

योग

उत्तर

sin(θ + α) = a and sin(θ + β) = b

L.H.S = cos 2(α - β) - 4ab cos(α - β)

Using cos2x = 2cos2x - 1,

Let us solve,

⇒ LHS = 2cos2(α - β) - 1 - 4ab cos(α - β)

⇒ LHS = 2cos(α - β) {cos(α - β) - 2ab} - 1

Since,

cos(α - β) = cos{(θ + α) - (θ + β)}

cos(A - B) = cosA cosB + sinA sinB

⇒ cos(α - β) = cos(θ + α) cos(θ + β) + sin(θ + α) sin(θ + β)

Since, sin(θ + α) = a

⇒ cos(θ + α) = `sqrt(1  –  sin^2(θ + alpha))`

= `sqrt(1  –  "a"^2)`

Similarly,

cos(θ + β) = `sqrt(1  –  b^2)`

Therefore,

cos(α - β) = `sqrt(1 - a^2) sqrt(1 - b^2) + ab`

Therefore,

L.H.S = `2{ab + sqrt(1  –  a^2)(1  –  b^2)}{ab + sqrt(1  –  a^2)(1  –  b^2) - 2ab} – 1`

⇒ L.H.S =`2{sqrt(1  –  a^2)(1  –  b^2) + ab}{sqrt(1  –  a^2)(1  –  b^2) – ab} - 1`

Using (x + y)(x - y) = x2 - y2

⇒ L.H.S = 2{(1 - a2)(1 - b2) - a2b2} - 1

⇒ L.H.S = 2{1 - a2 - b2 + a2b2} - 1

⇒ L.H.S = 2 - 2a2 - 2b2 - 1

⇒ L.H.S = 1 - 2a2 - 2b2 = RHS

Therefore,

We get,

cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 20 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Find the value of: sin 75°


Find the value of: tan 15°


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If cot (α + β) = 0, sin (α + 2β) is equal to


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×