मराठी

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2 [Hint: Express cos(α - β) = cos((θ + β) - (θ + β))] - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]

बेरीज

उत्तर

sin(θ + α) = a and sin(θ + β) = b

L.H.S = cos 2(α - β) - 4ab cos(α - β)

Using cos2x = 2cos2x - 1,

Let us solve,

⇒ LHS = 2cos2(α - β) - 1 - 4ab cos(α - β)

⇒ LHS = 2cos(α - β) {cos(α - β) - 2ab} - 1

Since,

cos(α - β) = cos{(θ + α) - (θ + β)}

cos(A - B) = cosA cosB + sinA sinB

⇒ cos(α - β) = cos(θ + α) cos(θ + β) + sin(θ + α) sin(θ + β)

Since, sin(θ + α) = a

⇒ cos(θ + α) = `sqrt(1  –  sin^2(θ + alpha))`

= `sqrt(1  –  "a"^2)`

Similarly,

cos(θ + β) = `sqrt(1  –  b^2)`

Therefore,

cos(α - β) = `sqrt(1 - a^2) sqrt(1 - b^2) + ab`

Therefore,

L.H.S = `2{ab + sqrt(1  –  a^2)(1  –  b^2)}{ab + sqrt(1  –  a^2)(1  –  b^2) - 2ab} – 1`

⇒ L.H.S =`2{sqrt(1  –  a^2)(1  –  b^2) + ab}{sqrt(1  –  a^2)(1  –  b^2) – ab} - 1`

Using (x + y)(x - y) = x2 - y2

⇒ L.H.S = 2{(1 - a2)(1 - b2) - a2b2} - 1

⇒ L.H.S = 2{1 - a2 - b2 + a2b2} - 1

⇒ L.H.S = 2 - 2a2 - 2b2 - 1

⇒ L.H.S = 1 - 2a2 - 2b2 = RHS

Therefore,

We get,

cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 20 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If sinθ + cosθ = 1, then find the general value of θ.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×