Advertisements
Advertisements
प्रश्न
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
उत्तर
sin(θ + α) = a and sin(θ + β) = b
L.H.S = cos 2(α - β) - 4ab cos(α - β)
Using cos2x = 2cos2x - 1,
Let us solve,
⇒ LHS = 2cos2(α - β) - 1 - 4ab cos(α - β)
⇒ LHS = 2cos(α - β) {cos(α - β) - 2ab} - 1
Since,
cos(α - β) = cos{(θ + α) - (θ + β)}
cos(A - B) = cosA cosB + sinA sinB
⇒ cos(α - β) = cos(θ + α) cos(θ + β) + sin(θ + α) sin(θ + β)
Since, sin(θ + α) = a
⇒ cos(θ + α) = `sqrt(1 – sin^2(θ + alpha))`
= `sqrt(1 – "a"^2)`
Similarly,
cos(θ + β) = `sqrt(1 – b^2)`
Therefore,
cos(α - β) = `sqrt(1 - a^2) sqrt(1 - b^2) + ab`
Therefore,
L.H.S = `2{ab + sqrt(1 – a^2)(1 – b^2)}{ab + sqrt(1 – a^2)(1 – b^2) - 2ab} – 1`
⇒ L.H.S =`2{sqrt(1 – a^2)(1 – b^2) + ab}{sqrt(1 – a^2)(1 – b^2) – ab} - 1`
Using (x + y)(x - y) = x2 - y2
⇒ L.H.S = 2{(1 - a2)(1 - b2) - a2b2} - 1
⇒ L.H.S = 2{1 - a2 - b2 + a2b2} - 1
⇒ L.H.S = 2 - 2a2 - 2b2 - 1
⇒ L.H.S = 1 - 2a2 - 2b2 = RHS
Therefore,
We get,
cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2.
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If sinθ + cosθ = 1, then find the general value of θ.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
The value of tan3A - tan2A - tanA is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB