मराठी

If sinθ + cosθ = 1, then find the general value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ + cosθ = 1, then find the general value of θ.

बेरीज

उत्तर

Given, sinθ + cosθ = 1

On dividing both the sides by `sqrt2`,

`sintheta/sqrt2 + costheta/sqrt2 = 1/sqrt2`

⇒ `cos(theta - pi/4) = cos  pi/4`

⇒ `theta - pi/4 = pi/4`

We know that, θ = 2nπ ± α when cosθ = cosα

⇒ `theta - pi/4 = 2npi ± pi/4, n ∈ z`

⇒ `theta = 2npi ± pi/4 + pi/4`

Taking the positive sign,

⇒ `theta = 2npi + pi/4 + pi/4`

⇒ `theta = 2npi + pi/2`

Taking the Negative sign,

⇒ `theta = 2npi - pi/4 + pi/4`

⇒ θ = 2nπ, n ∈ z

So, the general value is `theta = 2npi + pi/2` and θ = 2nπ.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 15 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


Write the maximum value of 12 sin x − 9 sin2 x


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


tan 3A − tan 2A − tan A =


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of tan 75° - cot 75° is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×