Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
उत्तर
\[\text{ Let } f\left( x \right) = 3 \cos x + 4 \sin x + 5\]
\[\text{ We know that }\]
\[ - \sqrt{3^2 + 4^2} \leq 3 \cos x + 4 \sin x \leq \sqrt{3^2 + 4^2}\]
\[ \Rightarrow - 5 \leq 3 \cos x + 4 \sin x \leq 5\]
\[ \Rightarrow - 5 + 5 \leq 3 \cos x + 4 \sin x + 5 \leq 5 + 5\]
\[ \Rightarrow 0 \leq f(x) \leq 10\]
\[\text{ Hence, maximum and minimum vales of f(x) are 0 and 10 respectively } .\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that
Prove that
Prove that:
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum value of 12 sin x − 9 sin2 x.
If A + B = C, then write the value of tan A tan B tan C.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of tan 75° - cot 75° is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If sinx + cosx = a, then sin6x + cos6x = ______.