मराठी

If Cos a = − 24 25 and Cos B = 3 5 , Where π < a < 3 π 2 and 3 π 2 < B < 2π, Find the Following: Cos (A + B) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)

थोडक्यात उत्तर

उत्तर

Given:
\[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\]
\[\text{ and }\pi < A < \frac{3\pi}{2}\text{ and }\frac{3\pi}{2} < B < 2\pi . \]
That is, A is in third quadrant and B is in fourth qudrant. 
We know that sine function is negative in third and fourth quadrants . 
Therefore, 
\[\sin A = - \sqrt{1 - \cos^2 A}\text{ and }\sin B = - \sqrt{1 - \cos^2 B}\]
\[ \Rightarrow \sin A = \sqrt{1 - \left( \frac{- 24}{25} \right)^2}\text{ and }\sin B = - \sqrt{1 - \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \sin A = - \sqrt{1 - \frac{576}{625}}\text{ and }\sin B = - \sqrt{1 - \frac{9}{25}}\]
\[ \Rightarrow \sin A = - \sqrt{\frac{49}{625}}\text{ and }\sin B = - \sqrt{\frac{16}{25}}\]
\[ \Rightarrow \sin A = \frac{- 7}{25}\text{ and }\sin B = \frac{- 4}{5}\]
Now
\[ \cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{- 24}{25} \times \frac{3}{5} - \frac{- 7}{25} \times \frac{- 4}{5}\]
\[ = \frac{- 72}{125} - \frac{28}{125}\]
\[ = \frac{- 100}{125}\]
\[ = \frac{- 4}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 3.2 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


tan 3A − tan 2A − tan A =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If cot (α + β) = 0, sin (α + 2β) is equal to


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×