Advertisements
Advertisements
प्रश्न
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
उत्तर
Given:
\[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\]
\[\text{ and }\pi < A < \frac{3\pi}{2}\text{ and }\frac{3\pi}{2} < B < 2\pi . \]
That is, A is in third quadrant and B is in fourth qudrant.
We know that sine function is negative in third and fourth quadrants .
Therefore,
\[\sin A = - \sqrt{1 - \cos^2 A}\text{ and }\sin B = - \sqrt{1 - \cos^2 B}\]
\[ \Rightarrow \sin A = \sqrt{1 - \left( \frac{- 24}{25} \right)^2}\text{ and }\sin B = - \sqrt{1 - \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \sin A = - \sqrt{1 - \frac{576}{625}}\text{ and }\sin B = - \sqrt{1 - \frac{9}{25}}\]
\[ \Rightarrow \sin A = - \sqrt{\frac{49}{625}}\text{ and }\sin B = - \sqrt{\frac{16}{25}}\]
\[ \Rightarrow \sin A = \frac{- 7}{25}\text{ and }\sin B = \frac{- 4}{5}\]
Now
\[ \cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{- 24}{25} \times \frac{3}{5} - \frac{- 7}{25} \times \frac{- 4}{5}\]
\[ = \frac{- 72}{125} - \frac{28}{125}\]
\[ = \frac{- 100}{125}\]
\[ = \frac{- 4}{5}\]
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
If sin α + sin β = a and cos α + cos β = b, show that
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
tan 3A − tan 2A − tan A =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cot (α + β) = 0, sin (α + 2β) is equal to
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of sin(45° + θ) - cos(45° - θ) is ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |