Advertisements
Advertisements
प्रश्न
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
उत्तर
\[\text{ Given: }\sin A = \frac{1}{2}\text{ and }\cos B = \frac{\sqrt{3}}{2}\]
\[\text{ Here,} \frac{\pi}{2} < A < \pi\text{ and }0 < B < \frac{\pi}{2} . \]
That is, A is in thesecond quadrant and B is in the first quadrant .
We know that in the second quadrant, sine function is positive and cosine and tan functions are negative
In the first quadrant, all T - functions are positive .
Therefore,
\[\cos A = - \sqrt{1 - \sin^2 A} = - \sqrt{1 - \left( \frac{1}{2} \right)^2} = - \sqrt{1 - \frac{1}{4}} = - \sqrt{\frac{3}{4}} = \frac{- \sqrt{3}}{2}\]
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{1}{2}}{\frac{- \sqrt{3}}{2}} = \frac{- 1}{\sqrt{3}}\]
\[\sin B = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{\sqrt{3}}{2} \right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
\[\tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}\]
Now,
\[ \tan\left( A - B \right) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\]
\[ = \frac{\frac{- 1}{\sqrt{3}} - \frac{1}{\sqrt{3}}}{1 + \frac{- 1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}}\]
\[ = \frac{\frac{- 2}{\sqrt{3}}}{1 - \frac{1}{3}}\]
\[ = \frac{\frac{- 2}{\sqrt{3}}}{\frac{2}{3}}\]
\[ = -\sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that
Prove that:
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Show that sin 100° − sin 10° is positive.
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum value of 12 sin x − 9 sin2 x.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
tan 3A − tan 2A − tan A =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.