Advertisements
Advertisements
प्रश्न
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
उत्तर
\[\text{ Given }:\]
\[\gamma = - \left[ \pi - (\alpha + \beta) \right]\]
\[\text{ Also }, \]
\[\lambda = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \left[ - (\pi - (\alpha + \beta) \right]}{\sin\alpha \sin\beta \cos( - (\pi - (\alpha + \beta))} \]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - (\sin(\alpha + \beta) )^2}{- (\sin\alpha \sin\beta\cos(\alpha + \beta))} \left[ \sin \left( \pi - \theta \right) = \sin \theta and \cos\left( \pi - \theta \right) = - \cos \theta \right]\]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{- (\sin\alpha \sin\beta \cos\alpha \cos\beta - \sin^2 \alpha \sin^2 \beta)}\]
\[ = \frac{\sin^2 \alpha(1 - \cos^2 \beta) + \sin^2 \beta(1 - \cos^2 \alpha) - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = \frac{2 \sin^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Find the value of: tan 15°
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
tan 3A − tan 2A − tan A =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`