मराठी

If Tan X + Tan ( X + π 3 ) + Tan ( X + 2 π 3 ) = 3 , Then Prove that 3 Tan X − Tan 3 X 1 − 3 Tan 2 X = 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].

टीपा लिहा

उत्तर

Given:
\[\tan x + \tan\left( x + \frac{\pi}{3} \right) + \tan\left( x + \frac{2\pi}{3} \right) = 3\]
\[ \Rightarrow \tan x + \frac{\tan x + \tan\frac{\pi}{3}}{1 - \tan x \tan \frac{\pi}{3}} + \frac{\tan x + \tan\frac{2\pi}{3}}{1 - \tan x \tan\frac{2\pi}{3}} = 3\]
\[ \Rightarrow \tan x + \frac{\tan x + \sqrt{3}}{1 - \sqrt{3}\tan x} + \frac{\tan x - \sqrt{3}}{1 + \sqrt{3}\tan x} = 3 \left[ \tan120^\circ = - \sqrt{3} \right]\]
\[ \Rightarrow \frac{\tan x(1 - 3 \tan^2 x) + \tan x + \sqrt{3} + \sqrt{3} \tan^2 x + 3\tan x + \tan x - \sqrt{3} - \sqrt{3} \tan^2 x + 3\tan x}{1 - 3 \tan^2 x} = 3 \]
\[ \Rightarrow \frac{9\tan x - 3 \tan^3 x}{1 - 3 \tan^2 x} = 3\]
\[ \Rightarrow \frac{3\tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\]
Hence proved .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 25 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cos 4x = 1 – 8sinx cosx


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×