Advertisements
Advertisements
प्रश्न
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
उत्तर
Given:
\[\sin (\alpha + \beta) = 1\text{ and }\sin (\alpha - \beta) = \frac{1}{2}\]
\[ \Rightarrow \alpha + \beta = 90^\circ . . . (1) \]
\[and \alpha - \beta = 30^\circ . . . (2) \]
By adding eq (1) and eq (2) we get:
\[ 2\alpha = 120^\circ\]
\[ \Rightarrow \alpha = 60^\circ\]
By subtracting eq (2) from eq (1), we get:
\[ 2\beta = 60^\circ\]
\[ \Rightarrow \beta = 30^\circ\]
Therefore,
\[\tan(\alpha + 2\beta) = \tan \left( 60^\circ + 2 \times 30^\circ \right) = \tan 120^\circ = - \sqrt{3}\]
\[\tan(2\alpha + \beta) = \tan \left( 2 \times 60^\circ + 30^\circ \right) = \tan 150^\circ = - \frac{1}{\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that:
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
Prove that:
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum value of 12 sin x − 9 sin2 x.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cot (α + β) = 0, sin (α + 2β) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of tan3A - tan2A - tanA is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`