Advertisements
Advertisements
प्रश्न
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
उत्तर
\[\cos^2 45^\circ - \sin^2 15^\circ\]
\[ = \cos\left( 45^\circ + 15^\circ \right)\cos\left( 45^\circ - 15^\circ \right) \left[ \cos^2 X - \sin^2 Y = \cos\left( X + Y \right)\cos\left( X - Y \right) \right]\]
\[ = \cos60^\circ\cos30^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\]
\[ = \frac{\sqrt{3}}{4}\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the maximum value of 12 sin x − 9 sin2 x.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of sin(45° + θ) - cos(45° - θ) is ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`