मराठी

Prove That: Sin ( a − B ) Cos a Cos B + Sin ( B − C ) Cos B Cos C + Sin ( C − a ) Cos C Cos a = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 

थोडक्यात उत्तर

उत्तर

\[\text{ LHS }= \frac{\sin\left( A - B \right)}{\cos A \cos B} + \frac{\sin\left( B - C \right)}{\cos B \cos C} + \frac{\sin\left( C - A \right)}{\cos C \cos A}\]
\[ = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B} + \frac{\sin B \cos C - \cos B \sin C}{\cos B \cos C} + \frac{\sin C \cos A - \cos C \sin A}{\cos C \cos A}\]
\[ = \frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B} + \frac{\sin B \cos C}{\cos B \cos C} - \frac{\cos B \sin C}{\cos B \cos C} + \frac{\sin C \cos A}{\cos C \cos A} - \frac{\cos C \sin A}{\cos C \cos A}\]
\[ = \frac{\sin A}{\cos A} - \frac{\sin B}{\cos B} + \frac{\sin B}{\cos B} - \frac{\sin C}{\cos C} + \frac{\sin C}{\cos C} - \frac{\sin A}{\cos A}\]
\[ = \tan A - \tan B + \tan B - \tan C + \tan C - \tan A\]
\[ = 0\]
 = RHS
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 16.2 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If sinθ + cosθ = 1, then find the general value of θ.


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinx + cosx = a, then sin6x + cos6x = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×