Advertisements
Advertisements
प्रश्न
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
उत्तर
Given that: `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα
By squaring and adding, we get
r2 = `3 + 1 - 2sqrt(3) + 3 + 1 + 2sqrt(3)`
⇒ r2 = 8
⇒ r = `+- 2sqrt(2)`
Now the given equation can be written as
rsinα cosθ + rcosα sinθ = 2
⇒ r(sinα cosθ + cosα sinθ) = 2
⇒ `2sqrt(2) sin(alpha + theta)` = 2
⇒ `sin(alpha + theta) = 2/(2sqrt(2)) = 1/sqrt(2)`
⇒ `sin(alpha + theta) = sin pi/4`
∴ α + θ = `npi + (-1)^n * pi/4` .....(i)
Now `(r sin alpha)/(r cos alpha) = (sqrt(3) - 1)/(sqrt(3) + 1)`
⇒ tanα = `(tan pi/3 - tan pi/4)/(1 + tan pi/4 * tan pi/3)`
⇒ tanα = `tan(pi/3 - pi/4)`
⇒ tanα = `tan pi/12`
∴ α = `pi/12`
Putting the value of α in equation (i) we get
`pi/12 + theta = npi + (-1)^n * pi/4`
∴ θ = `npi + (-1)^n * pi/4 - pi/12`
Hence, the general solution of the given equation is θ = `npi + (-1)^n * pi/4 - pi/12`, n ∈ Z.
APPEARS IN
संबंधित प्रश्न
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.