मराठी

Find the general solution of the equation (3-1)cosθ+(3+1)sinθ = 2 [Hint: Put 3-1 = r sinα, 3+1 = r cosα which gives tanα = tan(π4-π6) α = π12] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]

बेरीज

उत्तर

Given that: `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα

By squaring and adding, we get

r2 = `3 + 1 - 2sqrt(3) + 3 + 1 + 2sqrt(3)`

⇒ r2 = 8

⇒ r = `+-  2sqrt(2)`

Now the given equation can be written as

rsinα cosθ + rcosα sinθ = 2

⇒ r(sinα cosθ + cosα sinθ) = 2

⇒ `2sqrt(2) sin(alpha + theta)` = 2

⇒ `sin(alpha + theta) = 2/(2sqrt(2)) = 1/sqrt(2)`

⇒ `sin(alpha + theta) = sin  pi/4`

∴ α + θ = `npi + (-1)^n * pi/4`  .....(i)

Now  `(r sin alpha)/(r cos alpha) = (sqrt(3) - 1)/(sqrt(3) + 1)`

⇒ tanα = `(tan  pi/3 - tan  pi/4)/(1 + tan  pi/4 * tan  pi/3)`

⇒ tanα = `tan(pi/3 - pi/4)`

⇒ tanα = `tan  pi/12`

∴ α = `pi/12`

Putting the value of α in equation (i) we get

`pi/12 + theta = npi + (-1)^n * pi/4`

∴ θ = `npi + (-1)^n * pi/4 - pi/12`

Hence, the general solution of the given equation is θ = `npi + (-1)^n * pi/4 - pi/12`, n ∈ Z. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 29 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×