English

Find the general solution of the equation (3-1)cosθ+(3+1)sinθ = 2 [Hint: Put 3-1 = r sinα, 3+1 = r cosα which gives tanα = tan(π4-π6) α = π12] - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]

Sum

Solution

Given that: `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα

By squaring and adding, we get

r2 = `3 + 1 - 2sqrt(3) + 3 + 1 + 2sqrt(3)`

⇒ r2 = 8

⇒ r = `+-  2sqrt(2)`

Now the given equation can be written as

rsinα cosθ + rcosα sinθ = 2

⇒ r(sinα cosθ + cosα sinθ) = 2

⇒ `2sqrt(2) sin(alpha + theta)` = 2

⇒ `sin(alpha + theta) = 2/(2sqrt(2)) = 1/sqrt(2)`

⇒ `sin(alpha + theta) = sin  pi/4`

∴ α + θ = `npi + (-1)^n * pi/4`  .....(i)

Now  `(r sin alpha)/(r cos alpha) = (sqrt(3) - 1)/(sqrt(3) + 1)`

⇒ tanα = `(tan  pi/3 - tan  pi/4)/(1 + tan  pi/4 * tan  pi/3)`

⇒ tanα = `tan(pi/3 - pi/4)`

⇒ tanα = `tan  pi/12`

∴ α = `pi/12`

Putting the value of α in equation (i) we get

`pi/12 + theta = npi + (-1)^n * pi/4`

∴ θ = `npi + (-1)^n * pi/4 - pi/12`

Hence, the general solution of the given equation is θ = `npi + (-1)^n * pi/4 - pi/12`, n ∈ Z. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 29 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If A + B = C, then write the value of tan A tan B tan C.


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of tan 75° - cot 75° is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×