English

If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______. - Mathematics

Advertisements
Advertisements

Question

If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.

Options

  • 1

  • 2

  • –2

  • Not defined

MCQ
Fill in the Blanks

Solution

If α + β = `pi/4`, then the value of (1 + tanα)(1 + tanβ) is 2.

Explanation:

Given that: α + β = `pi/4`

⇒ `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)` = 1

⇒ tanα + tanβ = 1 – tanα tanβ

⇒ tanα + tanβ + tanα tanβ = 1

⇒ 1 + tanα + tanβ + tanα tanβ = 1 + 1

⇒ 1(1 + tanα) + tanβ(1 + tanα) = 2

⇒ (1 + tanα)(1 + tanβ) = 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 58]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 51 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Show that sin 100° − sin 10° is positive. 


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×