Advertisements
Advertisements
Question
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
Options
1
2
–2
Not defined
Solution
If α + β = `pi/4`, then the value of (1 + tanα)(1 + tanβ) is 2.
Explanation:
Given that: α + β = `pi/4`
⇒ `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)` = 1
⇒ tanα + tanβ = 1 – tanα tanβ
⇒ tanα + tanβ + tanα tanβ = 1
⇒ 1 + tanα + tanβ + tanα tanβ = 1 + 1
⇒ 1(1 + tanα) + tanβ(1 + tanα) = 2
⇒ (1 + tanα)(1 + tanβ) = 2
APPEARS IN
RELATED QUESTIONS
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Show that sin 100° − sin 10° is positive.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.