English

If Tan a = M M − 1 and Tan B = 1 2 M − 1 , Then Prove that a − B = π 4 . - Mathematics

Advertisements
Advertisements

Question

If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].

Answer in Brief

Solution

We know that
\[\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A\tan B}\]
\[ = \frac{\frac{m}{m - 1} - \frac{1}{2m - 1}}{1 + \frac{m}{(m - 1)(2m - 1)}}\]
\[ = \frac{2 m^2 - m - m + 1}{2 m^2 - m - 2m + 1 + m}\]
\[ = \frac{2 m^2 - 2m + 1}{2 m^2 - 2m + 1}\]
\[ = 1\]
\[ \Rightarrow A - B = \tan^{- 1} (1) \]
\[ \Rightarrow A - B = \frac{\pi}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 14.2 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: tan 15°


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×