English

If Cos P = 1 7 and Cos Q = 13 14 , Where P and Q Both Are Acute Angles. Then, the Value of P − Q is - Mathematics

Advertisements
Advertisements

Question

If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 

Options

  • π6

     

  • π3

     

  • π4

     

  • π12

     

MCQ

Solution

60⁰ = π3

cosP=17,cosQ=1314
 Therefore, sinP=1149=437 and sinQ=1169196=3314

Hence, tanp=43,tanQ=3314

cos(P-Q)=cosPcosQ+sinPsinQ

=17×1314+437×3314

=13+3698

=4998

cos(P-Q)=12

P-Q=cos-1 12

P-Q=60

Hence, the correct answer is option B.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 9 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  2sin2 π6+cosec2 7π6cos2 π3=32


Prove that  cot2 π6+cosec 5π6+3tan2 π6=6


Prove that: 2sin2 3π4+2cos2 π4 +2sec2 π3=10


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
sin (A + B)


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
7π12+cosπ12=sin5π12sinπ12


Prove that

cos9+sin9cos9sin9=tan54

Prove that tan69+tan661tan69tan66=1.


 If tanA=56 and tanB=111, prove that A+B=π4.


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that:
tan22xtan2x1tan22xtan2x=tan3xtanx


Prove that:
1sin(xa)sin(xb)=cot(xa)cot(xb)sin(ab)


If tanθ=sinαcosαsinα+cosα , then show that sinα+cosα=2cosθ.


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


If a = b cos2π3=ccos4π3 then write the value of ab + bc + ca.  


If tan α=11+2x and tanβ=11+2x+1 then write the value of α + β lying in the interval (0,π2) 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


tan 3A − tan 2A − tan A =


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If tan (A − B) = 1 and sec (A + B) = 23, the smallest positive value of B is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of sin2(2π3+x)+sin2(2π3x) is


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If sin(x+y)sin(x-y)=a+ba-b, then show that tanxtany=ab [Hint: Use Componendo and Dividendo].


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanα = mm+ 1, tanβ = 12m+1, then α + β is equal to ______.


If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______.


If tanθ = ab, then bcos2θ + asin2θ is equal to ______.


The maximum distance of a point on the graph of the function y = 3 sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tanA = 1-cosBsinB, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.