Advertisements
Advertisements
Question
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Solution
\[ \Rightarrow \left( c - a \tan x \right) = b \sec x\]
\[ \Rightarrow \left( c - a \tan x \right)^2 = \left( b \sec x \right)^2 \]
\[ \Rightarrow c^2 + a^2 \tan^2 x - 2ac \tan x = b^2 \sec^2 x\]
\[ \Rightarrow c^2 + a^2 \tan^2 x - 2ac \tan x = b^2 \left( 1 + \tan^2 x \right)\]
\[ \Rightarrow \left( a^2 - b^2 \right) \tan^2 x - 2ac \tan x + \left( c^2 - b^2 \right) = 0\]
This is a quadratic in tan x.
\[\text{ It has two solutions }\tan \alpha\text{ and }\tan \beta . \]
\[\tan \alpha + \tan \beta = \frac{2ac}{a^2 - b^2}\]
\[\tan \alpha \times \tan \beta = \frac{c^2 - b^2}{a^2 - b^2}\]
\[\text{Therefore, }\tan\left( \alpha + \beta \right) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha\tan \beta}\]
\[ = \frac{\frac{2ac}{a^2 - b^2}}{1 - \frac{c^2 - b^2}{a^2 - b^2}}\]
\[ = \frac{2ac}{a^2 - c^2}\]
\[\text{Hence, }\sin\left( \alpha + \beta \right) = \frac{2ac}{a^2 + c^2}\text{ and }\cos\left( \alpha + \beta \right) = \frac{a^2 - c^2}{a^2 + c^2} .\]
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that:
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 3A − tan 2A − tan A =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`