Advertisements
Advertisements
Question
If sinx + cosx = a, then |sinx – cosx| = ______.
Solution
Given that: sinx + cosx = a
(sinx + cosx)2 = a2
⇒ sin2x + cos2x + 2sinx cosx = a2
⇒ 1 + 2sinx cosx = a2
⇒ sinx cosx = `(a^2 - 1)/2` .......(i)
|sinx – cosx| = sin2x + cos2x – 2sinx cosx
= `1 - 2((a^2 - 1)/2)`
= 1 – (a2 – 1)
= 1 – a2 + 1
= 2 – a2
∴ |sinx – cosx| = `sqrt(2 - a^2)`
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Write the maximum value of 12 sin x − 9 sin2 x.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.