Advertisements
Advertisements
Question
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
Options
(a) 0
(b)\[\frac{\pi}{2}\]
(c) \[\frac{\pi}{3}\]
(d) \[\frac{\pi}{4}\]
Solution
(d)\[\frac{\pi}{4}\]
\[\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B} \]
\[ = \frac{\frac{a}{a + 1} + \frac{1}{2a + 1}}{1 - \frac{a}{\left( a + 1 \right)(2a + 1)}}\]
\[ = \frac{2 a^2 + a + a + 1}{2 a^2 + 3a + 1 - a}\]
\[ = \frac{2 a^2 + 2a + 1}{2 a^2 + 2a + 1}\]
\[ = 1\]
\[\text{ Therefore }, A + B = \tan^{- 1} (1) = \frac{\pi}{4} . \]
APPEARS IN
RELATED QUESTIONS
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If sinθ + cosθ = 1, then find the general value of θ.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of tan3A - tan2A - tanA is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |