English

If Tan a = a A + 1 and Tan B = 1 2 a + 1 - Mathematics

Advertisements
Advertisements

Question

If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 

Options

  • (a) 0 

  • (b)\[\frac{\pi}{2}\] 

  • (c) \[\frac{\pi}{3}\] 

  • (d) \[\frac{\pi}{4}\] 

MCQ

Solution

(d)\[\frac{\pi}{4}\] 

\[\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B} \]
\[ = \frac{\frac{a}{a + 1} + \frac{1}{2a + 1}}{1 - \frac{a}{\left( a + 1 \right)(2a + 1)}}\]
\[ = \frac{2 a^2 + a + a + 1}{2 a^2 + 3a + 1 - a}\]
\[ = \frac{2 a^2 + 2a + 1}{2 a^2 + 2a + 1}\]
\[ = 1\]
\[\text{ Therefore }, A + B = \tan^{- 1} (1) = \frac{\pi}{4} . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 4 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If sinθ + cosθ = 1, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×