English

If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to - Mathematics

Advertisements
Advertisements

Question

If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to

Options

  • (a) 0 

  • (b) −1 

  • (c) 1

  • (d) None of these 

MCQ
Short Note

Solution

(b)  −1
π = 180° 

\[\sec A\left( \cos B\cos C - \sin B\sin C \right) = \frac{\cos B\cos\left( \pi - \left( A + B \right) \right) - \sin B\sin\left( \pi - \left( A + B \right) \right)}{\cos A}\]
We know that, 
\[\cos\left( \pi - \theta \right) = - cos\theta \text{ and } \sin\left( \pi - \theta \right) = sin\theta\]  
\[\therefore \sec A\left( \cos B\cos C - \sin B\sin C \right) = \frac{\cos B\cos\left( A + B \right) - \sin B\sin\left( A + B \right)}{\cos A}\]

Now, using the identities 

\[\cos\left( A + B \right) = \cos A\cos B - \sin A\sin B\]  and \[\sin\left( A + B \right) = \sin A\cos B + \cos A\sin B\]

\[\sec A\left( \cos B\cos C - \sin B\sin C \right) = \frac{- \cos A\cos B^2 + \cos B\sin A\sin B - \sin B\sin A\cos B - \sin^2 B\cos A}{\cos A}\] 

\[\Rightarrow \sec A\left( \cos B\cos C - \sin B\sin C \right) = \frac{- \cos A\left( \cos^2 B + \sin^2 B \right)}{\cos A}\]
\[ \Rightarrow \sec A\left( \cos B\cos C - \sin B\sin C \right) = \frac{- \cos A}{\cos A} = - 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 2 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan 75° - cot 75° is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×