English

If Sin a = 12 13 and Sin B = 4 5 , Where π 2 < a < π and 0 < B < π 2 , Find the Following: Cos (A + B) - Mathematics

Advertisements
Advertisements

Question

 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)

Answer in Brief

Solution

 Given:
\[\sin A = \frac{12}{13}\text{ and }\sin B = \frac{4}{5}\]
\[\text{When, }\frac{\pi}{2} < A < \pi\text{ and }0 < B < \frac{\pi}{2}, \]
\[\cos A = - \sqrt{1 - \sin^2 A}\text{ and }\cos B = \sqrt{1 - \sin^2 B}\]
( As cosine function is negative in second qudrant and positive in first quadrant )
\[\Rightarrow \cos A = - \sqrt{1 - \left( \frac{12}{13} \right)^2}\text{ and }\cos B = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ \Rightarrow \cos A = - \sqrt{1 - \frac{144}{169}}\text{ and }\cos B = \sqrt{1 - \frac{16}{25}}\]
\[ \Rightarrow \cos A = - \sqrt{\frac{25}{169}}\text{ and }\cos B = \sqrt{\frac{9}{25}}\]
\[ \Rightarrow \cos A = \frac{- 5}{13}\text{ and }\cos B = \frac{3}{5}\]
Now,
\[\cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{- 5}{13} \times \frac{3}{5} - \frac{12}{13} \times \frac{4}{5}\]
\[ = \frac{- 15}{65} - \frac{48}{65}\]
\[ = \frac{- 63}{65}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 2.2 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


Write the maximum value of 12 sin x − 9 sin2 x


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×