English

If Sin α Sin β − Cos α Cos β + 1 = 0, Prove that 1 + Cot α Tan β = 0. - Mathematics

Advertisements
Advertisements

Question

If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.

Answer in Brief

Solution

Given:
sinαsinβcosαcosβ+1=0
(cosαcosβsinαsinβ)+1=0
cos(α+β)+1=0
cos(α+β)=1
 Therefore, sin(α+β)=0....(1)( Since sinθ=1cos2θ)
Hence ,
1+cotαtanβ=1+cosαsinβsinαcosβ
=sinαcosβ+cosαsinβsinαcosβ
=sin(α+β)sinαcosβ
=0...{ From eq (1)}
Hence proved .

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 30 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

cos(π+x)cos(-x)sin(π-x)cos(π2+x)= cot2x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

cos9x-cos5xsin17x-sin3x=-sin2xcos10x


Prove the following:

sinx+sin3xcosx+cos3x=tan2x


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:

sin (A + B)

 


 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
sin (A + B)


If sinA=35,cosB=1213, where A and B both lie in second quadrant, find the value of sin (A + B).


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
sin (A + B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that:

sin(π3x)cos(π6+x)+cos(π3x)sin(π6+x)=1

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If tan x + tan(x+π3)+tan(x+2π3)=3, then prove that 3tanxtan3x13tan2x=1.


If angle θ  is divided into two parts such that the tangents of one part is λ times the tangent of other, and ϕ is their difference, then show thatsinθ=λ+1λ1sinϕ

 

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B = C, then write the value of tan A tan B tan C.


If tan α=11+2x and tanβ=11+2x+1 then write the value of α + β lying in the interval (0,π2) 


tan 20° + tan 40° + 3 tan 20° tan 40° is equal to 


tan 3A − tan 2A − tan A =


If cot (α + β) = 0, sin (α + 2β) is equal to


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If tanθ=12 and tanϕ=13, then the value of tanϕ=13 is 

 

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If tanα=xx+1 and tanα=xx+1, then α+β is equal to


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = k+1k-1 sin Φ


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ.

[Hint: Express tanθ = tan(α-π4)θ=α-π4]


If sinθ + cosθ = 1, then find the general value of θ.


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = 12.


If tanA = 12, tanB = 13, then tan(2A + B) is equal to ______.


If tanα = 17, tanβ = 13, then cos2α is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


State whether the statement is True or False? Also give justification.

If tanA = 1-cosBsinB, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.